A Feasible Nonconvex Relaxation Approach to Feature Selection
نویسندگان
چکیده
Variable selection problems are typically addressed under a penalized optimization framework. Nonconvex penalties such as the minimax concave plus (MCP) and smoothly clipped absolute deviation (SCAD), have been demonstrated to have the properties of sparsity practically and theoretically. In this paper we propose a new nonconvex penalty that we call exponential-type penalty. The exponential-type penalty is characterized by a positive parameter, which establishes a connection with the l0 and l1 penalties. We apply this new penalty to sparse supervised learning problems. To solve to resulting optimization problem, we resort to a reweighted l1 minimization method. Moreover, we devise an efficient method for the adaptive update of the tuning parameter. Our experimental results are encouraging. They show that the exponential-type penalty is competitive with MCP and SCAD.
منابع مشابه
A semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملEigenvalue Techniques for Convex Objective, Nonconvex Optimization Problems
Consider a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region. Traditional optimization approaches will frequently encounter a fundamental difficulty when dealing with such problems: even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away”...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملMinimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization
To increase the science return of future missions toMars and to enable sample return missions, the accuracy with which a lander can be delivered to the Martian surface must be improved by orders of magnitude. The prior work developed a convex-optimization-based minimum-fuel powered-descent guidance algorithm. In this paper, this convex-optimization-based approach is extended to handle the casew...
متن کامل